Exact models for Hall current reconnection with axial guide fields

نویسندگان

  • I. J. D. Craig
  • P. G. Watson
چکیده

This paper employs an analytic reconnection model to investigate the conditions under which Hall currents can influence reconnection and Ohmic dissipation rates. It is first noted that time dependent magnetohydrodynamic systems can be analyzed by decomposing the magnetic and velocity fields into guide field and reconnecting field components. A formally exact solution shows that Hall currents can speed up or slow down the reconnection rate depending on the strength and orientation of the axial guide field. In particular, merging solutions are developed in which the axial guide field is the dominant driver of the reconnection. The extent to which Hall currents can alleviate the buildup of back pressures in flux pile-up reconnection models is also examined. The analysis shows that, although enhancements of the merging rate can be expected under certain conditions, it is unlikely that Hall currents can completely undo the fundamental pressure limitations associated with flux pile-up reconnection. © 2005 American Institute of Physics. [DOI: 10.1063/1.1826094]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetry of the ion diffusion region Hall electric and magnetic fields during guide field reconnection: observations and comparison with simulations.

In situ measurements of magnetic reconnection in the Earth's magnetotail are presented showing that even a moderate guide field (20% of the reconnecting field) considerably distorts ion diffusion region structure. The Hall magnetic and electric fields are asymmetric and shunted away from the current sheet; an appropriately scaled particle-in-cell simulation is found to be in excellent agreement...

متن کامل

Magnetic Reconnection Solutions Based on a Generalized Ohm’s Law

It is known that exact magnetic reconnection solutions can be constructed for collisionally dominated resistive plasmas. In this paper we refine the collisional resistive description by invoking an Ohm’s law that includes Hall current and plasma inertial contributions. We first demonstrate the surprising fact that the analytic treatment of both two and three dimensional current sheet reconnecti...

متن کامل

Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection

[1] A key feature of collisionless magnetic reconnection is the formation of Hall magnetic and electric field structure in the vicinity of the diffusion region. Here we present multi-point Cluster observations of a reconnection event in the near-Earth magnetotail where the diffusion region was nested by the Cluster spacecraft; we compare observations made simultaneously by different spacecraft ...

متن کامل

Scaling of asymmetric Hall magnetic reconnection

[1] The scaling of the reconnection rate and ion and electron outflow speeds with upstream magnetic field strengths and plasma mass densities during asymmetric collisionless (Hall) reconnection without a guide field is studied using two-dimensional two-fluid simulations. The results agree with a recent theory by Cassak and Shay (2007). It is found that the normalized reconnection rate is on the...

متن کامل

The Role of the Guide Field in Relativistic Pair Plasma Reconnection

We study the role of the guide field in relativistic magnetic reconnection in a Harris current sheet of pair (e±) plasmas, using linear theories and particlein-cell (PIC) simulations. Two-dimensional PIC simulations exhibit the guide field dependence to the linear instabilities; the tearing or reconnection modes are relatively insensitive, while the relativistic drift-kink instability (RDKI), t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004